Publications

Publications and preprints in reversed chronological order.

2025

  1. cakf.png
    Computation-Aware Kalman Filtering and Smoothing
    Marvin Pförtner, Jonathan Wenger, Jon Cockayne, and Philipp Hennig
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2025

2024

  1. cagp_model_selection.png
    Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
    Jonathan Wenger, Kaiwen Wu, Philipp Hennig, Jacob R. Gardner, Geoff Pleiss, and John P. Cunningham
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
  2. gps_alternating_projection.png
    Large-Scale Gaussian Processes via Alternating Projection
    Kaiwen Wu, Jonathan Wenger, Haydn Jones, Geoff Pleiss, and Jacob R. Gardner
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
  3. accelerating_nonconjugate_gps.png
    Accelerating Generalized Linear Models by Trading off Computation for Uncertainty
    Lukas Tatzel, Jonathan Wenger, Frank Schneider, and Philipp Hennig
    2024

2023

  1. theory_practice_ntk.png
    On the Disconnect Between Theory and Practice of Neural Networks: Limits of the Neural Tangent Kernel Perspective
    Jonathan Wenger, Felix Dangel, and Agustinus Kristiadi
    2023
  2. linpde-gp.png
    Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
    Marvin Pförtner, Ingo Steinwart, Philipp Hennig, and Jonathan Wenger
    2023

2022

  1. posterior_computational_uncertainty.png
    Posterior and Computational Uncertainty in Gaussian Processes
    Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, and John P. Cunningham
    In Advances in Neural Information Processing Systems (NeurIPS), 2022
  2. preconditioning_gps.png
    Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
    Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, and Jacob R. Gardner
    In International Conference on Machine Learning (ICML), 2022

2021

  1. probnum_logo.png
    ProbNum: Probabilistic Numerics in Python
    Jonathan Wenger, Nicholas Krämer, Marvin Pförtner, Jonathan Schmidt, Nathanael Bosch, Nina Effenberger, Johannes Zenn, Alexandra Gessner, Toni Karvonen, François-Xavier Briol, Maren Mahsereci, and Philipp Hennig
    2021

2020

  1. probabilistic_linear_solvers.png
    Probabilistic Linear Solvers for Machine Learning
    Jonathan Wenger, and Philipp Hennig
    In Advances in Neural Information Processing Systems (NeurIPS), 2020
  2. nonparametric_calibration.png
    Non-Parametric Calibration for Classification
    Jonathan Wenger, Hedvig Kjellström, and Rudolph Triebel
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2020