pycalib.calibration_methods Module

Calibration Methods.

Classes

BayesianBinningQuantiles([C, input_range])

Probability calibration using Bayesian binning into quantiles

BetaCalibration([params])

Probability calibration using Beta calibration

CalibrationMethod()

A generic class for probability calibration

GPCalibration(n_classes[, logits, …])

Probability calibration using a latent Gaussian process

HistogramBinning([mode, n_bins, input_range])

Probability calibration using histogram binning

IsotonicRegression([out_of_bounds])

Probability calibration using Isotonic Regression

LabelBinarizer([neg_label, pos_label, …])

Binarize labels in a one-vs-all fashion

NoCalibration([logits])

A class that performs no calibration.

OneVsRestCalibrator(calibrator[, n_jobs])

One-vs-the-rest (OvR) multiclass strategy Also known as one-vs-all, this strategy consists in fitting one calibrator per class.

Parallel([n_jobs, backend, verbose, …])

Helper class for readable parallel mapping.

PlattScaling([regularization, random_state])

Probability calibration using Platt scaling

TemperatureScaling([T_init, verbose])

Probability calibration using temperature scaling