pycalib.gp_classes Module

Gaussian Process classes enabling variational inference of a single GP in GPcalibration.

Classes

DataHolder(value[, dtype, fix_shape, name])

DataHolder is similar to the Parameter with only difference that default values for fix_shape and trainable options are opposite to the Parameter’s and it does not have prior and transform options.

GPModel(X, Y, kern, likelihood, mean_function)

A base class for Gaussian process models, that is, those of the form

Log()

Natural logarithm prior mean function.

MeanFunction([name])

The base mean function class.

Minibatch(value[, batch_size, shuffle, …])

Minibatch is a special case of data holders.

MultiCal(num_classes[, invlink, …])

Parameter(value[, transform, prior, …])

Parameter class is a cornerstone of the GPflow package.

Parameterized([name])

Parameterized object represents a set of computations over children nodes and one of the main purposes is to store these children node like objects.

SVGPcal(X, Y, kern, likelihood[, feat, …])

Probability calibration using a sparse variational latent Gaussian process.

ScalarMult([alpha])

Scalar multiplication mean function.

SoftArgMax(num_classes, **kwargs)

This class implements the multi-class softargmax inverse-link function.